Loading text...
Code Executed
Code:
import sympy
x = sympy.symbols('x')
f = sympy.sin(x)
g = sympy.cos(x)
# Interval
a = sympy.pi / 4
b = 5 * sympy.pi / 4
# Determine which function is greater on the interval [pi/4, 5pi/4]
# Test a point in the interval, e.g., pi/2
test_val = sympy.pi / 2
f_val = f.subs(x, test_val)
g_val = g.subs(x, test_val)
# Area integral
area_expr = sympy.Abs(f - g)
# Since sin(x) >= cos(x) on [pi/4, 5pi/4]
integrand = f - g
area = sympy.integrate(integrand, (x, a, b))
print(f"f(pi/2) = {f_val}")
print(f"g(pi/2) = {g_val}")
print(f"Integrand: {integrand}")
print(f"Area: {area}")
Output:
f(pi/2) = 1 g(pi/2) = 0 Integrand: sin(x) - cos(x) Area: 2*sqrt(2)
STEP 1 • VERIFIED
Loading text...
VIEW STEPS
Have a Math Question?
Ask your own question to get a step-by-step verified solution instantly.
Ask a Question