Loading text...
import sympy x, p = sympy.symbols('x p') r1, r2 = sympy.symbols('r1 r2') # Vieta's formulas: # r1 + r2 = p # r1 * r2 = 12 # Given: |r1 - r2| = 2 => (r1 - r2)^2 = 4 # We know (r1 - r2)^2 = (r1 + r2)^2 - 4*r1*r2 # 4 = p^2 - 4*12 # 4 = p^2 - 48 # p^2 = 52 # p = +/- sqrt(52) = +/- 2*sqrt(13) eq = sympy.Eq(p**2 - 4*12, 4) solutions = sympy.solve(eq, p) print(f"{solutions=}")
solutions=[-2*sqrt(13), 2*sqrt(13)]
Ask your own question to get a step-by-step verified solution instantly.
The roots of x2−px+12=0x^2 - px + 12 = 0x2−px+12=0 differ by 2. Find ppp.
Solution for p2−4⋅12=4p^{2} - 4 \cdot 12 = 4p2−4⋅12=4