Loading text...
def f(x): return x**2 - 3*x + 4 f_2 = f(2) f_neg_1 = f(-1) print(f"f(2) = {f_2}") print(f"f(-1) = {f_neg_1}")
f(2) = 2 f(-1) = 8
Ask your own question to get a step-by-step verified solution instantly.
If f(x)=x2−3x+4f(x)=x^2-3x+4f(x)=x2−3x+4, find f(2)f(2)f(2) and f(−1)f(-1)f(−1).
Result for 22−3⋅2+42^{2} - 3 \cdot 2 + 422−3⋅2+4
Result for (−1)2−3⋅(−1)+4(-1)^{2} - 3 \cdot (-1) + 4(−1)2−3⋅(−1)+4